4 Key Math Concepts You Won’t Find on Standardized Tests

Posted November 28, 2016 by gensci
Categories: Uncategorized

For the most part, standardized tests like the SAT and ACT are good indicators of math aptitude and college readiness. Since the tests are timed, you have about a minute to answer each problem. Success on these tests means having your fundamental math rules memorized and being fluent with their use.

However, there are some problems types that are really good for students to learn, and that take more than a minute to solve, even for the most fluent student. And these are not found on the SAT, PSAT or ACT. So, if a teacher and/or a math course is designed to “teach to the test,” it may be lacking some key concepts that are fantastic at building good problem-solving skills. More importantly, these concepts are (or should be) vital for teaching math as the “language of science,” which is what makes math real and useful and connects students to their world and their Creator.

The following is a list of 4 key concepts, all of which are present in Shormann Mathematics, but are normally missing from the SAT and ACT. Shormann Math teaches these concepts in more basic forms starting in Algebra 1, progressing to more complex forms later. Much of the text below was pulled directly from our Shormann Math lessons.

Measurement/Unit analysis

“To measure is to know” is a quote by William Thompson, Lord Kelvin(1824–1907), a Christian and scientist. What Kelvin meant was that if we can measure something, we then know something about it. As Christians, we must be careful about faulty reasoning that says by building our knowledge of nature, we gain enough evidence to conclude God’s existence. We should never think we need to “conclude” God from the evidence. On the contrary, God designed us to know He exists (Romans 1:20), so we start with God, who is the beginning of knowledge (Proverbs 1:7).

When we measure things, we often have to convert the measurement from one unit to another. Measuring and converting units are essential skills in everything from cooking to engineering. Measuring accurately, and honestly, is also important to God (Proverbs 20:10 and elsewhere).

Proofs

To understand any subject well, not just math, one must start with rules and definitions. As the famous math teacher John Saxon said, fundamentals like these form the “basis of creativity,” and this is true. Likewise, to understand God, you have to start with some foundational rules. And while Scripture is much more than a “rulebook”, it contains Truth that helps us know who He is, how to build a relationship with Him, and how to do the things He has called us to do. It is self-evident that to learn anything, we must do so using the deductive process of applying rules.

While postulates are statements assumed to be true without proof, theorems (propositions) are true statements requiring proof. One mark of a maturing Christian is that they are able to use Scripture to “give a reason” for the hope that is in them (I Peter 3:15). In the same way, a mature math student should be able to give a reason for the steps they use to complete a problem. In mathematics, proof and the techniques used to write proofs require us to be prepared to have an answer we can back up. It forces us to slow down and think things through a little more before we answer.

Infinite Series

Leonhard Euler (1707-1783) said that infinite series are a subject that should be studied with “the greatest attention.” Unfortunately, in most modern math courses, infinite series are studied little, if any, until calculus, where they tend to create a lot of confusion because students have a poor foundation. But Euler put them in his algebra book, Elements of Algebra, a book that most modern Algebra 1 and 2 courses are based off. If you start Shormann Math in Algebra 1, you will learn a lot about Euler and other famous mathematicians, and you will probably know more about series and infinite series than the average student your age.

But why did Euler think infinite series were so important, especially in regards to fractions? Well, what is calculus? It’s the study of speed, right? Or even more generally, it’s the study of rates of change. It’s a study of how this changes as that changes, and when we compare this to that, we are studying fractions! Not only that, when we break a fraction into an infinite series of discrete pieces, we are doing computations that computer programs must do. Building fluency with infinite series can really go far in connecting students to fundamental aspects of computers.

Vectors

If you understand that traveling North at 60 mph is different than traveling South at 60 mph, then you have a basic understanding of vectors. Vectors allow us to consider two things at the same time, such as an object’s speed and it direction of travel. And something called the Parallelogram Law provides a simple way for understanding how to add vectors. In fact, the famous mathematician Alfred North Whitehead (1861-1947) believed that the Parallelogram Law “is the chief bridge over which the results of pure mathematics pass in order to obtain application to the facts of nature.” In other words, vectors are a really important tool for studying God’s creation!

Concepts like these are not usually learned overnight. Like learning a language or a new instrument, sport, etc., it take patient practice over several years. That’s why Shormann Math introduces these concepts in more basic forms starting in Algebra 1, giving students time to gradually build skills through practice and repetition. Click here to learn more about Shormann Math, and how Shormann Algebra 1 and 2 also help prepare students for the SAT, ACT and CLEP exams. Thanks for reading this post!

Building Good Study Habits with Shormann Math

Posted May 16, 2016 by gensci
Categories: Teaching Mathematics

Tags: , , , ,

Screen Shot 2016-05-16 at 2.21.44 PM

We just completed the beta-test of Shormann Algebra 2, our second course in the Shormann Math series. We learned a lot about what does and doesn’t work last year in the Shormann Algebra 1 course, so in building Shormann Algebra 2, we applied the good and cast the bad into the lake of fire.

A key part of Shormann Math is TruePractice™, the result of our efforts to design the most efficient system for building fluency in mathematics. If you want to be good at something, whether it’s baseball, piano, math, etc., there is simply no substitute for the need to practice. A lot.  If, however, you think you can be good at something by receiving magical superhero powers while sitting on your couch, then you either watch way too many movies, or you’re weird. Or both! But there are more and less efficient systems for practice, and we are finding that our TruePractice™ system that includes 100 lessons with 20 problems per lesson is achieving good results, compared to John Saxon-authored math courses which average 120 lessons and 30 problems per lesson.

With Shormann Math, students build fluency through 1) Practice Sets that are designed with the understanding that “practice time” is different than “game time,” 2) Weekly Quizzes that are like a “practice game,” and 3) Quarterly Exams that equate with “game day,” “piano recital,” etc.

Regarding Quarterly Exams, take a look at the graph of average student score vs. study effort. On the week of a quarterly exam, we provide detailed instructions on what we believe are the best methods for studying for an exam. The key, as you probably know, is to practice a lot. Because our eLearning campus provides data on some, but not all aspects of student study effort, we can group students into those who followed our study guidelines (blue line) and those who did not (red line).

The results are not surprising at all and show that we have a good system in place for helping students build fluency in math. Follow the system and make an A. Don’t follow the system and make a B or worse. Our study guidelines are based on years of teaching experience, combined with years more of learning from good college math, science and engineering professors at top universities.

Are you a parent who wants a good and God-glorifying math curriculum for your child? Or, even better, are you a student who wants to know God better by using math as a tool for studying His creation, and you’ve been looking for a curriculum that will help you do this? If yes, take a look at Shormann Math today.

 

C.S. Lewis Destroys Common Core in One Sentence

Posted December 3, 2015 by gensci
Categories: Teaching Mathematics

Tags: , , , , , , , , , ,

Screen Shot 2015-11-28 at 12.02.23 PM

Common Core Cancer

A brave Texas 7th-grader alleges that during an assignment about Common Core’s fake version of critical thinking, the teacher directed students to label God as a myth. This type of “anchor chart” assignment forces students to wrongfully classify all statements as either fact, opinion, or commonplace assertion. Here’s how these categories are defined in a typical Common Core-diseased classroom:

  • fact: Something that is true about a subject and can be tested or proven.
  • opinion: What someone thinks, feels or believes
  • commonplace assertion: Stating something is true without supporting it with facts or proof.

Notice how only facts are considered “true”, while opinions and commonplaces assertions are categorized as things that are either false or just “true for me but not necessarily true for you.”

This type of assignment is at the heart of Common Core educational standards (standards that supposedly aren’t taught in Texas. Surprise!). In his excellent March 2015 New York Times article about this fundamental problem with Common Core , philosopher Justin McBrayer described how students are required to fit things into one, and only one of these categories. In other words, you can’t believe in a fact, and only facts can be true. So, God can’t be believed in AND also be a fact! But neither can you believe that 2+2 = 4, the sky is blue, or grass is green. Those are just facts, not things you also believe, you silly non-Common Core indoctrinated person!

I hope you agree with me that it is absolutely absurd to force students to categorize all statements into only one of three “anchor chart” categories, and then call it a “critical thinking” assignment. It is sad that so many millions of students are being taught “how to think” using such irrational methods. And it doesn’t just start in 7th grade; McBrayer spotted the same type of anchor chart assignment in his child’s 2nd grade classroom!

 

The Katy ISD 7th-grade teacher directed the class to categorize the statement “There is a God” as opinion by labeling God as a myth. This is a fine tactic for someone who hates God to employ, because when most people, not just Common Core indoctrinated schoolchildren, hear the word myth, they think “legend,” or “fake story about the past.”

C.S. Lewis to the Rescue

 

But, could a great story about the past also be true? Why does myth have to always make us think “fake Greek sky gods?” Here’s where C.S. Lewis rescues us from oversimplifying our world in a way that gives us a false view of reality:

Now the story of Christ is simply a true myth: a myth working on us the same way as the others, but with this tremendous difference that it really happened: and one must be content to accept it in the same way, remembering that it is God’s myth where the others are men’s myths: i.e., the Pagan stories are God expressing Himself through the minds of poets, using such images as He found there, while Christianity is God expressing Himself through what we call ‘real things’.

In one long, beautiful, eloquent, God-glorifying sentence, C.S. Lewis destroys the Common Core’s ridiculous “anchor chart.” Lewis words reassure us that legends can also be true! Or in Common Core language, opinions can also be facts, facts can be assertions, etc.

Tools to Use in Your Thinking

You see, school-aged children don’t need to be trained “what to think,” nor do they need to be trained “how to think.” As math-teaching legend John Saxon once said,

God gives students the ability to think. Society does not give children that ability.

God designed us with the ability to think critically. The 7th grade Katy ISD student is a perfect example of that, as she was able to spot the flaw in her teachers’ fake “critical thinking” assignment, an assignment that will no longer be taught in Katy ISD thanks to her efforts.

What students need are tools to use in their thinking. And one of the best tools is mathematics. Some math curriculum to consider include any John Saxon-authored courses, as well as my company’s new curriculum, Shormann Math, a curriculum built on a solid foundation of mathematics’ legends, with Jesus Christ as the common core. Logic is another course worth considering. At a minimum, study this logical fallacy poster. Another resource is Introductory Logic by Roman Roads Media.  Books by Nancy Pearcey are also excellent resources for understanding the negative impact of oversimplifying the ‘real things’ C.S. Lewis was describing. Total Truth, Saving Leonard0, and Finding Truth are all excellent. And of course, any books or essays by C.S. Lewis! And last but not least, the Bible, without which we would not know that we are supposed to reason together (Isaiah 1:18).

 

Shormann Math Builds Effective Study Habits

Posted October 19, 2015 by gensci
Categories: Teaching Mathematics

Tags: , , , , , , ,

With Shormann Math, using 21st Century technology to create a math course allows us to obtain valuable information revealing that, regardless of skill level, students who want to learn math, can, and Shormann Math has the tools for them to do so.

For example, during quarterly exam week, students are provided with two full-length practice exams. Practice exams allow students to prove to themselves that they really do (or don’t) know the material covered that quarter. Besides the practice exams, they are given other guidelines on how to prepare for the exams. The guidelines are based on years of teaching experience, as well as observing university professors. Between my bachelor’s in aerospace engineering, and a PhD in aquatic science, I had a lot of professors and exams! And the best professors, the ones who really wanted you to learn the material, did two things: 1) they kept a file of previous exams in the library that students could check out and study, and 2) they had office hours so students could ask questions. Shormann Math provides both, with 1) practice exams that reward students for a good study effort and 2) free email Q&A any time.

But are the practice exams helpful? Well, see for yourself. The following graph displays the recent results of Quarterly Exam 1 scores for Shormann Algebra 1 and 2(beta) students.* The bottom line is that students with “Good” study habits made A’s on the exam. The graph is a display of the obvious fact that good study habits build fluency, resulting in good scores on the actual exam. Being fluent in math means you know how to use the rules to solve new problems. And the purpose of the Practice Exams in Shormann Math is to provide new problems so the student can prove to themselves whether they are fluent, and if not, what they need to review.

Screen Shot 2015-10-19 at 1.08.03 PM

At some point in your life, you will be tested on a large amount of information. Whether it’s for a job you really want, a driver’s license, an SAT, ACT, MCAT, etc., sooner or later, test day is coming. And if you really want that license, or that job, etc., you are going to put the personal effort into it to study. Shormann Math is designed to help students build effective study habits in a less important setting where the stakes aren’t as high. But, as the results above reveal, the best curriculum in the world won’t make a bit of difference if the student doesn’t put that personal effort into following directions and studying effectively.

*Graph details: Scores are from Quarterly Exam 1 taken by students in Dr. Shormann’s live online Algebra 1 and 2 classes, October 2015. The three categories are based on student performance on the 2 practice exams take prior to the actual exam. The students are allowed to take the practice exam, review mistakes using the solutions manual provided, and then take it again. Students who put the effort into retaking each practice exam were rewarded for their effort with a higher grade. Students are also encouraged to show work on their paper, solving each problem by hand. For the actual exam, they are required to submit handwritten work on each problem. The practice exams were counted as one of their homework grades, providing further encouragement to complete them. The three categories were broken down as follows: “Good” students averaged 95% or better on the practice exams, all of which took at least one of the exams more than once in order to get a higher score, which means they took the time to correct their mistakes and study the problems they missed. “Mediocre” students took each exam once, but averaged below 95%, and showed little to no effort to try the exam again, missing a valuable opportunity to review and build fluency. “Poor” students did not attempt either practice exam. Of special note is the fact that the trend was consistent, regardless of which course students were doing (Algebra 1 or 2).  Also, because the students had the opportunity to retake each practice exam until they received a 100, study effort, and not skill level, was the main factor influencing performance on the actual exam. Not all students are equally gifted in math (or any subject), but students who are less-skilled at math can do better by studying harder. These results provide good evidence that, with Shormann Math, students who want to learn math, can, regardless of skill level!

Shormann Math is for Everyone

Posted August 6, 2015 by gensci
Categories: Teaching Mathematics

Tags: , , , , , , ,

A Great Question

We recently received a great question about our new Shormann Algebra 1 course:

Are your courses best for mathy children, or can average students also complete them?

While “mathy” really isn’t a word, anyone with any teaching experience knows what this parent was talking about. Some students just “get” math quicker than others. They’re able to go farther and faster in math than most children their age. So, is Shormann Math mainly for these students, or is it more for students who are gifted in other, “non-mathy” areas?

An Illustration

The best answer is that Shormann Math is for everyone! To help me explain how, first take a look at this photo I shot a few months ago of a Hawaiian green sea turtle. The photo appears at the top of Shormann Algebra 2, Lesson 25. You’ll see what this has to do with answering the parent’s question shortly:

Screen Shot 2015-08-05 at 8.11.06 PM

Everyone loves sea turtles, right? I mean, do you know anyone who hates sea turtles? I don’t. There are some things in this photo that everyone can relate to, like beauty, design, color, and function, to name a few. There are also things that individuals gifted in certain areas would appreciate that others won’t. Photographers, for example, may be curious about what type of camera was used, resolution, lighting, etc. Everyone might notice how the magnified view of the eye is blurred, and composed of rows and columns of tiny squares. But only someone with a good knowledge of computers and/or digital photography could explain the “why” behind the tiny squares (called pixels).

Connecting Students to Their World and Their Creator

But what if your child is a future computer scientist, engineer, etc., and they just don’t know it yet? What if they, or you, haven’t already drawn the line between “mathy” and “non-mathy?” Well, Shormann Math is for you, too! Because everyone is created in God’s image (Genesis 1:26-28), everyone is designed to be creative like Him, too. But while God can just create by speaking (John 1:1-5), we humans need tools. And mathematics is like a giant treasure chest of tools, waiting to be discovered and put to use.

But the primary focus of Shormann Math is not about math. It’s about relationship. It’s about using math to help a child discover more about God’s Word and His creation, and build their relationship with Christ.

If you study the greatest mathematicians in history, like we do in Shormann Math, you find that all their new mathematical discoveries were connected to their study of Creation. While not all of them acknowledged God, a lot of them did, and in doing so it allowed them to see farther and discover more than any of their predecessors. The rich Christian heritage of modern mathematics is not something to hide in the back of a dark closet, but, like a favorite painting, it should be placed in the right frame, with the right lighting, and set in a prominent place.

In a nutshell, here’s what Shormann Math is about:

Shormann Math is designed to connect students to their world and their Creator by using an incremental approach with continual review to teach 10 major math concepts from a Christian foundation.

But Does it Work?

But does this “incremental approach with continual review” work? Well, the results of our Shormann Algebra 1 beta-test say “yes!” Pioneered by the late John Saxon (1923-1996), his “incremental approach with continual review”  has achieved astounding results. The results of Saxon Math in a traditionally low-performing Dallas public school were highlighted in this 1990 interview on 60 Minutes.

If the 60 Minutes interview doesn’t convince you of the merits of John Saxon’s approach, then maybe this historic quote by President Ronald Reagan will:

I’m sure you’ve probably heard about that new math textbook. It’s by a fellow named John Saxon, that has average I.Q. students scoring above high I.Q. students and has Algebra I students who use this textbook doing better on tests than Algebra II students who use the traditional text…

(Remarks at a White House Reception for the National Association of Elementary School Principals and the National Association of Secondary School Principals, July 29, 1983)

Even a former U.S. President saw the merits of a teaching method that could help the average student go farther in mathematics than they ever dreamed.

Scholars describe mathematics as “the language of science.” And what is a good way to learn a new language (or a sport, or an instrument)? Well, you learn some of the basics, practice for a while, and then learn some more. You use an “incremental approach with continual review!” And like a language, sport, or instrument, mathematics is not a passive, textbook-only activity. It’s an active, pencil and paper pursuit. The method is instrumental in making Shormann Math for everyone!

Click here if you want to learn more about Shormann Math, including pricing, sample lectures and homework, a detailed teacher’s guide, and more.

Shormann Algebra 1: Results Matter

Posted July 31, 2015 by gensci
Categories: Teaching Mathematics

Tags: , , , , , ,

Why do results matter?

Shormann Math builds on a solid foundation of time-tested teaching methods, including the incremental development + continual review format pioneered by John Saxon(1923-1996). And not just Saxon’s teaching methods, but his teaching thoughts as well, including his thought that

Results, not methodology, should be the basis of curriculum decisions.

One of the primary reasons John Saxon developed his math curriculum in the 1980s was because new ways of teaching math were not working. Math “educrats” at the time were promoting their untested “visions” of math teaching. But with 3 engineering degrees, John was a math user before he became a math teacher. Not only that, he was a test pilot. If anyone knew the extreme value and importance of testing a new product, it was John!

Results matter because they reveal whether or not a new product really works. And while statistics certainly don’t reveal everything about a new product, they can certainly reveal many things. Most math curricula don’t provide this level of detail on student performance. But with Shormann Math, each new course is beta-tested in a live, online setting first before releasing it to the general public. The following are statistics from the beta-test of Shormann Algebra 1. The results show that the majority of students made an A! The following statistics, plus other detailed information about the course, can also be found in our Shormann Algebra 1 teacher’s guide. To purchase Shormann Math, click here.

Overall Performance

Screen Shot 2015-07-31 at 10.57.22 AM

Discussion: The average student in our beta test made an A in the class! Because each new Shormann Math course is beta-tested in a live online class setting, Dr. Shormann gets to know the students on more than just a “numbers only” basis. And we all know that God doesn’t make clones, so the fact that not every student performed the same should not be a surprise. Natural talent definitely matters, but so do things like attitude and maturity.  Dr. Shormann spends time during the video lectures encouraging students to develop fruits like patience and self-control (Galatians 5:22-23), as well as persevering with joy (James 1:2-3), and gratefulness (I Thessalonians 5:18).

Practice Sets

Screen Shot 2015-07-31 at 10.57.30 AM

Discussion: You’ve probably never seen statistics on student performance in a math class before, which is why it is important to discuss the data! The decreasing trend over time is exactly what we expected. Two big factors are responsible for the trend: 1) There’s more review of previously-learned concepts at the beginning, so it’s easier and 2) student effort tends to decrease the closer you get to the end of the year!

What we had hoped for was a Practice Set average above 85%, and that was achieved in all 4 quarters! 85% is a good cutoff for determining whether students are understanding, and retaining most of the concepts learned.

Note also the high first quarter average. Because Shormann Math is built on John Saxon’s method of integrating geometry and algebra, students using Saxon Math 8/7 or Saxon Algebra ½ will be most comfortable starting Shormann Math. However, not all beta-test students used Saxon previously, so the high first quarter average is a good indication that students who successfully completed any pre-algebra course should do just fine in Shormann Math.

Weekly Quizzes

Screen Shot 2015-07-31 at 10.57.40 AM

Discussion: Weekly Quizzes show a similar trend to the Practice Sets, challenging the students more as the year progressed. A score of 8 out of 10 or higher is a good indication of whether students understood the lessons covered that week. We are pleased that scores were well above this in all four quarters!

Quarterly Exams

Screen Shot 2015-07-31 at 10.57.47 AM

Discussion: Notice the Quarterly Exams do not follow the same trend as Practice Sets or Weekly Quizzes, with Quarter 1 having the lowest average. And this is where beta-testing a new product is so valuable. We realized that we were asking a lot for 9th-grade level students, most of which had never taken a cumulative exam like this. The solution? Practice exams! Just like when learning a sport, a musical instrument, etc., good practice results in good performance. The beta-test students clearly performed best on first quarter Practice Sets and Quizzes. Most likely, if they were given practice exams prior to their quarterly exam 1, this would have been their highest exam average. Now, all quarterly exams have two practice exams that students use to study for their actual exam.

85%+ is an indicator of good retention and understanding of concepts covered in a quarter. For all 4 quarters, student averages were at, or well above 85%. Because of Shormann Math’s format of continual review, we are basically asking students to be responsible for “all their math, all the time.” These results show that on average, students are responding very well!

How Shormann Math Teaches Proof

Posted June 17, 2015 by gensci
Categories: Teaching Mathematics

Tags: , , , , , , ,
Screen Shot 2015-05-12 at 9.58.04 AM

Euclid’s Proposition 1 overlaying a pod of spinner dolphins swimming in a near-perfect equilateral triangle formation! The concept of proof applies to everything from building a rocket to the simple beauty of a pod of dolphins. Photo Credit clarklittlephotography.com

What is proof?

Proof is really nothing more than providing a reason for statements made or steps taken. In the standard American government school 3-year “layer cake” approach to high school math, the concept of proof is normally limited to some sections in the geometry layer. But proof is not a concept that is the exclusive domain of geometry. Shormann Math teaches proof in 3 main ways, by 1) studying Euclid’s foundational work on proof, 2) showing that proof is for all of math, not just a few weeks in geometry class, and 3) showing how proof applies in the real world.

Euclid and proof

Around 300 B.C., Euclid (330 – 275 B.C.) organized the previous 3 centuries of Greek mathematical work into a 13-volume thesis known today as The Elements or Euclid’s Elements. Scholars believe that only the Holy Bible has been more universally distributed, studied and translated. Starting with a foundation of 5 postulates, 5 axioms, and 23 definitions, Euclid proved 465 theorems, or propositions.While postulates are basically rules that are assumed to be true without proof, theorems are true statements requiring proof. Postulates are also referred to as self-evident truths.

Surprisingly, even though Euclid is considered the “Father of proof,” most American high school geometry textbooks mention little to nothing about Euclid. In Shormann Math though, students will learn who Euclid was, and the importance of his contribution to Western Civilization. Shormann Algebra 1 and 2 students will become very familiar with Euclid’s first 5 propositions, giving them a good understanding of proof technique. They will gain an appreciation for the deductive nature of geometry and geometric constructions, seeing how one proposition often requires the previous one. And they will also see the simple beauty and elegance of Euclid’s propositions.

Proof and mathematics

Perhaps one of the greatest flaws in the “layer cake” approach to high school math is that the concept of proof is almost always limited to a few weeks during the geometry year. In Shormann Math, we’ll do the standard triangle proofs and circle proofs, but we will also apply proof technique in other topics like algebra, trigonometry and calculus.

But how can proof be for more than just geometry? Well, proof is based on a type of reasoning called deductive reasoning (applying rules). Every single math concept begins with rules. And every single math problem can be solved by applying those rules. All of mathematics is deductive in nature, which means at any time, a student should be able to explain the rules (provide reasons for) they used to solve a problem.

Because Shormann Math is integrated, we’re able to help students make connections between the major concepts like algebra and geometry. This results in students getting a better feel for what mathematics is about, which will make it easier to learn. Instead of thinking that they are always learning something new and different, they will see how one lesson builds on previous ones, which makes it less intimidating.

Proof and the the real world

Sure, proof is important to mathematicians, but it’s also important in the real world. As we explain in Lesson 68 of Shormann Algebra 1,

“Supporting statements with reasons is a technique used by, and expected of, people that society refers to with words like professional, leader, wise, helpful, and trustworthy. People like Abraham Lincoln, the 16th President of the United States of America, known for his study of Euclid’s Elements and his application of the idea of proof to solving societal problems.”

We also helps students see the application of proof technique in the real world, as this table from Shormann Algebra 2 explains:

Screen Shot 2015-06-17 at 6.03.09 PM

Most importantly, proof is profoundly important in sharing the Gospel with unbelievers. God wants us to be ready to give reasons for the hope of salvation (I Peter 3:15). Our reasons should primarily be Scriptures we have memorized, or at least remember where to find them.

Conclusion

As you can see, proof is about a lot more than geometry! Shormann Math gives students a basic understanding of proof technique and it’s application to the real world. It’s a great tool to help them in their thinking, planning, designing and serving. If you think you would like your child to learn math in a more natural way that connects them to their world and their Creator, click here to learn more!