Posted tagged ‘infinity’

Letters of Euler to a German Princess, Vol. II, Letter XI

July 5, 2018

This is the fifth of eleven Letters of Euler I will rewrite and post on the subject of infinitesimals (the infinitely small), an idea that is fundamental to a good understanding of calculus. Click here to read the previous letter.

Letter XI. Reflections on Divisibility in infinitum, and on Monads.

In speaking of the divisibility of body, we must carefully distinguish what is in our power, from what is possible in itself. In the first sense, it cannot be denied, that such a division of a body as we are capable of, must be very limited.

By pounding a stone we can easily reduce it to powder; and if it were possible to reckon all the little grains which form that powder, their number would undoubtedly be so great, that it would be matter of surprize, to have divided the stone into so many parts. But these very grains will be almost indivisible with respect to us, as no instrument we could employ would be able to lay hold of them. But it cannot with truth be affirmed that they are indivisible in themselves. You have only to view them with a good microscope, and each will appear itself a considerable stone, on which are distinguishable a great many points and inequalities; which demonstrates the possibility of a farther division, though we are not in a condition to execute it. For wherever we can distinguish several points in any object, it must be divisible into so many parts.

We speak not, therefore, of a division practicable by our strength and skill, but of that which is possible in itself, and which the Divine Omnipotence is able to accomplish.

It is in this sense, accordingly, that philosophers use the word ‘divisibility:’ so that if there were a stone so hard that no force could break it, it might be without hesitation affirmed as divisible, in its own nature, as the most brittle, of the same magnitude. And how many bodies are there on which we cannot lay any hold, and of whose divisibility we can entertain not the smallest doubt? No one doubts that the moon is a divisible body, though he is incapable of detaching the smallest particle from it: and the simple reason for its divisibility, is its being extended.

Wherever we remark extension, we are under the necessity of acknowledging divisibility, so that divisibility is an inseparable property of extension. But experience likewise demonstrates that the division of bodies extends very far. I shall not insist at great length on the instance usually produced of a ducat*: the artisan can beat it out into a leaf so fine, as to cover a very large surface, and the ducat may be divided into as many parts as that surface is capable of being divided. Our own body furnishes an example much more surprizing. Only consider the delicate veins and nerves with which it is filled, and the fluids which circulate through them. The subtility there discoverable far surpasses imagination.

*A ducat is a gold coin used in Euler’s day.

The smallest insects, such as are scarcely visible to the naked eye, have all their members, and legs on which they walk with amazing velocity. Hence we see that each limb has its muscles composed of a great number of fibres; that they have veins, and nerves, and a fluid still much more subtile which flows through their whole extent.

On viewing with a good microscope a single drop of water, it has the appearance of a sea; we see thousands of living creatures swimming in it, each of which is necessarily composed of an infinite number of muscular and nervous fibres, whose marvellous structure ought to excite our admiration. And though these creatures may perhaps be the smallest which we are capable of discovering by the help of the microsope, undoubtedly they are not the smallest which the Creator has produced. Animacules probably exist as small relatively to them, as they are relatively to us. And these after all are not yet the smallest, but may be followed by an infinity of new classes, each of which contains creatures incomparably smaller than those of the preceding class.

We ought in this to acknowledge the omnipotence and infinite wisdom of the Creator, as in objects of the greatest magnitude. it appears to me, that the consideration of these minute species, each of which is followed by another inconceivably more minute, ought to make the liveliest impression on our minds, and inspire us with the most sublime ideas of the works of the Almighty, whose power knows no bounds, whether as to great objects or small.

To imagine that after having divided a body into a great number of parts, we arrive, at length, at particles so small as to defy all farther division, is therefore the indication of a very contracted mind. But supposing it is possible to descend to particles so minute as to be, in their own nature, no longer divisible, as in the case of the supposed monads; before coming to this point, we shall have a particle composed of only two monads, and this particle will be of a certain magnitude or extension, otherwise it could not have been divisible into these two monads. Let us farther suppose, that this particle, as it has some extension, may be the thousandth part of an inch, or still smaller if you will; for it is of no importance, what I say of the thousandth part of an inch may be said with equal truth of every smaller part. This thousandth part of an inch, then, is composed of two monads, and consequently two monads together would be the thousandth part of an inch, and two thousand times nothing, a whole inch; the absurdity strikes at first light.

The partisans of the system of monads accordingly shrink from the force of this argument, and are reduced to a terrible nonplus when asked how many monads are requisite to constitute an extension. Two, they apprehend, would appear insufficient, they therefore allow that more must be necessary. But, if two monads cannot constitute extension, as each of the two has none; neither three, nor four, nor any number whatever will produce it; and this complexity subverts the system of monads.

9th May, 1761.

Letters of Euler to a German Princess, Vol. II, Letter X

July 3, 2018

This is the fourth of eleven Letters of Euler I will rewrite and post on the subject of infinitesimals (the infinitely small), an idea that is fundamental to a good understanding of calculus. Click here to read the previous letter, which I posted over a year ago. Sorry, I’m a little slow on posting these!

Letter X. Of Monads.

When we talk, in company, on philosophical subjects, the conversation usually turns on such articles as have excited violent disputes among philosophers.

The divisibility of the body is one of them, respecting which the sentiments of the learned are greatly divided. Some maintain, that this divisibility goes on to infinity, without the possibility of ever arriving at particles so small as to be susceptible of no farther division. But others insist, that this division extends only to a certain point, and that you may come at length to particles so minute, that, having no magnitude, they are no longer divisible. These ultimate particles, which enter into the composition of bodies, they denominate simple beings, and monads.

There was a time when the dispute respecting monads employed such general attention, and was conducted with so much warmth, that it forced its way into company of every description, that of the guard-room not excepted. There was scarce a lady at court who did not take a decided part in favour of monads or against them. In a word all conversation was engrossed by monads, no other subject could find admission.

The Royal Academy of Berlin took up the controversy, and being accustomed annually to propose a question for discussion, and to bestow a gold medal of the value of fifty ducats on the person who in the judgment of the Academy has given the most ingenious solution, the question respecting monads was selected for the year 1748. A great variety of essays on the subject were accordingly produced. The president Mr. de Maupertuis named a committee to examine them, under the direction of the late Count Dohna, great chamberlain to the queen; who, being an impartial judge, examined with all imaginable attention, the arguments adduced both for and against the existence of monads. Upon the whole, it was found that those which went to the establishment of their existence were so feeble, and so chimerical, that they tended to the subversion of all the principles of human knowledge. The question was, therefore, determined in favour of the opposite opinion, and the prize adjudged to Mr. Justi, whose piece was deemed the most complete refutation of the monadists.

You may easily imagine how violently this decision of the Academy must irritate the partisans of monads, at the head of whom stood the celebrated Mr. Wolff. His followers, who were then much more numerous, and more formidable than at present, exclaimed in high terms against the partiality and injustice of the Academy; and their chief had well nigh proceeded to launch the thunder of a philosophical anathema against it. I do not now recollect to whom we are indebted for the care of averting this disaster.

As this controversy has made a great deal of noise, you will not be displeased, undoubtedly, if I dwell  a little upon it. The whole is reduced to this simple question, “Is the body divisible to infinity?” or in other words, “Has the divisibility of bodies any bound, or has it not?” I have already remarked as to this, that extension, geometrically considered, is on all hands allowed to be divisible infinitum; because, however small a magnitude may be, it is possible to conceive the half of it, and again the half of that half, and so on to infinity.

This notion of extension is very abstract, as are those of all genera, such as that of man, of horse, of tree, etc., as far as they are not applied to an individual and determinate being. Again, it is the most certain principle of all our knowledge, that whatever can be truly affirmed of the genus, must be true of all the individuals comprehended under it. If therefore all bodies are extended, all the properties belonging to extension must belong to each body in particular. Now all bodies are extended; and extension is divisible to infinity; therefore every body must be so likewise. This is a syllogism of the best form; and as the first proposition is indubitable, all that remains, is to be assured that the second is true, that is, whether it be true or not, that bodies are extended.

The partisans of monads, in maintaining their opinion, are obliged to affirm, that bodies are not extended, but have only an appearance of extension. They imagine that by this they have subverted the argument adduced in support of the divisibility in infinitum. But if body is not extended, I should be glad to know, from whence we derived, the idea of extension; for, if body is not extended, nothing in the world is, as spirits are still less so. Our idea of extension, therefore, would be altogether imaginary and chimerical.

Geometry would accordingly be a speculation entirely useless and illusory, and never could admit of any application to things really existing. In effect, if no one thing is extended, to what purpose investigate the properties of extension? But as geometry is, beyond contradiction, one of the most useful of sciences, its object cannot possibly be a mere chimera.

There is a necessity, then, of admitting, that the object of geometry is at least the same apparent extension which those philosophers allow to body; but, this very object is divisible to infinity: therefore existing beings, endowed with this apparent extension, must necessarily be extended.

Finally, let those philosophers turn themselves which way soever they will in support of their monads, or those ultimate and minute particles, divested of all magnitude, of which, according to them, all bodies are composed, they still plunge into difficulties, out of which they cannot extricate themselves. They are right in saying, that it is a proof of dulness to be incapable of relishing their sublime doctrine; it may however be remarked, that here the greatest stupidity is the most successful.

5th May, 1761.